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Population size bias in descendant-weighted diffusion quantum Monte Carlo simulations
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We consider the influence of population size on the accuracy of diffusion quantum Monte Carlo simulations
that employ descendant weighting or forward walking techniques to compute expectation values of observables
that do not commute with the Hamiltonian. We show that for a simple model system, the d-dimensional
isotropic harmonic oscillator, the population size must increase rapidly with d in order to ensure that the
simulations produce accurate results. When the population size is too small, expectation values computed using
descendant-weighted diffusion quantum Monte Carlo simulations exhibit significant systematic biases.
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I. INTRODUCTION

The diffusion quantum Monte Carlo (DQMC) method [1]
is a stochastic approach for solving the many-body
Schrodinger equation by exploiting the isomorphism be-
tween this equation and the imaginary-time diffusion equa-
tion. In essence, a DQMC simulation follows the time evo-
lution of a set of particles, often called “psips” or “walkers,”
whose motion through configuration space is governed by a
diffusion equation with source and sink terms that are related
to the many-body potential energy surface that appears in the
corresponding Schrodinger equation. As the simulation
progresses in time, transients associated with the initial dis-
tribution of particles die out and the long-time time-averaged
concentration field of walkers approaches a steady state. This
steady state distribution is (in the absence of importance
sampling) proportional to the nodeless wave function of low-
est energy that solves the Schrodinger equation under con-
sideration.

Any practical DQMC simulation necessarily follows the
evolution of a finite collection of walkers, and the steady
state distribution of walkers which is sought must be con-
structed by averaging together many “snapshots” of the
walkers’ instantaneous distribution. The resulting average
only approximately represents the true ground state wave
function of the associated many-body quantum system, both
because the population of walkers is finite and because the
number of snapshots that can be collected in any practical
DQMC simulation is also finite. It is natural to expect that
this approximation to the true steady state distribution will
approach the true distribution more closely as either the
number of walkers or the number of snapshots increases. In
this paper, we examine the relationship between this conver-
gence process and the dimensionality of the underlying con-
figuration space.

A simple thought experiment serves to motivate our in-
quiry. Suppose that we select N random numbers {x;} from a
reasonably well behaved distribution function F(x). We then
show the set {x;} and the function F(x) to an impartial referee
and ask the referee whether the set of numbers is consistent
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with the specified distribution. Next, we select N pairs
{(x;,y;)} from a bivariate distribution G(x,y). Again, we
show the set of points and the distribution function G(x,y) to
the referee and ask whether the set of points is consistent
with the specified distribution. We continue this game, each
time selecting N points from a multivariate distribution
whose dimension increases by one in each round of the
game. It is not difficult to suppose that once the dimension-
ality of the space is sufficiently high, the referee will quit the
game in frustration because the collection of N points does
not cover the multidimensional space sufficiently densely to
provide any real sense of the underlying distribution func-
tion. At that point, if we want to continue the game, we must
increase the number of points N that we select from the
distribution function. The game we have described is one
that we ourselves play whenever we try to interpret the ap-
proximate steady state distribution obtained by averaging
snapshots collected during a DQMC simulation.

Here we investigate this phenomenon using a simple
model system: the d-dimensional isotropic harmonic oscilla-
tor. We begin in Sec. II by describing a method for quanti-
fying the similarity between this system’s ground state wave
function and a snapshot collected from a DQMC simulation
with N walkers. We demonstrate that with this definition of
the similarity, N must grow exponentially with d in order to
guarantee that an individual snapshot closely resembles the
underlying wave function. Section III then shows that one
consequence of this is that, unless very large walker popula-
tions are used, DQMC simulations that employ descendant
weighting or forward walking techniques to estimate the ex-
pectation values of coordinate-space observables that do not
commute with the Hamiltonian can give substantially biased
results when d is large [2]. In Sec. IV we demonstrate that
the use of importance sampling techniques [3] can reduce,
but not eliminate, these biases. We conclude with a brief
discussion in Sec. V.

II. IS A SINGLE SNAPSHOT SIMILAR TO THE WAVE
FUNCTION?

We consider a set of d independent, identical one-
dimensional harmonic oscillators. The oscillators’ configura-
tion is specified by the vector q=(g;,¢>, -..,q,) of dimen-
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sionless coordinates, and the potential energy of the set of
oscillators is given by V(q)=%wg?/2. Henceforth we employ
atomic units and set w=1 a.u.

We suppose that we have a DQMC simulation algorithm
that generates snapshots of the locations of N walkers; a
single snapshot is simply a collection {q;:i=1,2,...,N} of N
positions in RY. We further suppose that this algorithm is
accurate in the sense that the walker locations in any particu-
lar snapshot are drawn from the normalized distribution
F(q)=(2m)~%? exp(—q*/2), which is proportional to the sys-
tem’s ground state wave function W(q). Let

S(q) =2%* exp(- ¢*/2) (1)

so that

f S(q)F(q)dq=1. (2)
]Rd

For a snapshot {q,;:i=1,2,...,N} of N walkers drawn from
the distribution F(q), we define

N
1
s = ;/z S(q,), 3)

which is a Monte Carlo approximation to the left-hand side
of Eq. (2), to be the similarity between the snapshot and the
distribution F(q). We expect that snapshots that faithfully
resemble the distribution F(q) will have s values near 1.
For single-walker snapshots (N=1), the observed values

of s cover the range 0<s<s,,,,, with s,,,,=2%?, and follow
the probability distribution
1 o x/ d/2—1
R LLCVE) W
Smanl (d12)

This distribution has unit mean for all values of d and a
variance ¢2=(2/43)4=1 that grows exponentially with d.
For N> 1, the distribution’s variance o>/N also grows expo-
nentially with d, as shown in Fig. 1. Thus for a snapshot of N
walkers to have a high probability of resembling (in the
sense quantified by s) the true steady state distribution F(q),
N must grow exponentially with d.

III. COMPUTING OBSERVABLES FROM DQMC
SNAPSHOTS

What implications does this finding have for practical
DQMC simulations? To answer this question, we turn to the
problem of using the DQMC method to evaluate the
expectation value (B)=(¥(q)|B(q)|¥(q)) of a nondifferen-
tial operator B(q) that does not commute with the Hamil-
tonian. (Henceforth we call such operators Hamiltonian-
noncommuting, or HNC, operators.) This expectation value
can be estimated from an individual DQMC snapshot as a
weighted average of the observable’s value over the walkers
comprising the snapshot:
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FIG. 1. Semilog plot of the variance of the similarity distribu-
tion P(s) as a function of dimension d and number of walkers N.
Each point is computed from an ensemble of 5 X 108_/N randomly
sampled N-walker snapshots. The function In[((2/y3)?=1)/N] is
plotted for three values of N using solid lines.

N N -1
B= (E B(q,->W(q,»)> (E W(q,»)) . (5)
i=1

i=1

We have dropped the angle brackets to indicate that B is an
approximation to, and distinct from, the expectation value
(B). The weight factor W(q) in Eq. (5) is, in the absence of
importance sampling, a quantity proportional to the value
W (q) of the wave function at the position q; this quantity can
be estimated during a DQMC simulation using forward
walking [4] or descendant weighting [5] techniques. (We dis-
cuss importance-sampled simulations below in Sec. IV.)

Consider an idealized DQMC simulation in which this
weight factor can be computed exactly for each walker in the
snapshot. Returning to our model system consisting of d un-
coupled harmonic oscillators, we can, without loss of gener-
ality, set W(q)=S(q) as given in Eq. (1). With this choice of
W(q), Eq. (5) can be written as B=b/s, where

N
|
= X,i:El B(q)S(q)). (6)

We now ask what shape the distribution P(B) of observed B
values has, and examine how this shape depends on the num-
ber of points N in the DQMC snapshot.

To answer these questions, we first consider the distribu-
tion P(b) of b values generated by the sum in Eq. (6). We
examine the specific HNC operator B(q)=¢>/d, which has
expectation value (B)=1/2. The distribution P(b) has mean
1/2 and variance [(2/V3)4(2+d)/9d—1/4]/N that grows ex-
ponentially with d. We therefore conclude that for a snapshot
with N walkers to produce a value for b that falls close to the
mean value of 1/2, N must grow exponentially with d.

We therefore anticipate that for small N and large d, the
distribution P(B) of observed values of B will be rather
broad, because (1) both the numerator » and denominator s
of B have variances that increase exponentially with d and
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FIG. 2. Probability distribution function P(B) for the quantity
B=¢?/d as a function of dimension d and number of walkers N.
Panel (a) shows P(B) for N=100; panel (b) shows P(B) for
N=1000. Each distribution function is normalized to unit area and
is computed from an ensemble of 5X10° randomly sampled
N-walker snapshots. Note that the horizontal axis is identical in
both panels.

(2) the b and s values for typical snapshots are only weakly
correlated with each other. Evidence for this proposition is
shown in Fig. 2, which shows how the distribution function
P(B) depends on d at both N=100 [panel (a)] and N=1000
[panel (b)]. At a fixed value of d, P(B) becomes more
sharply peaked as N increases, while at a fixed value of N,
P(B) broadens as d increases.

Figure 2 also indicates that for large d, the mean of the
distribution P(B) deviates substantially from the true expec-
tation value (B)=1/2. Consequently, for this model system,
the approximate expectation value computed via descendant-
weighted DQMC will exhibit a systematic error when d is
large. Figure 3 shows how this systematic error depends on
the number of walkers N; although the mean of P(B) ap-
proaches the true expectation value of 1/2 as N increases,
the rate of convergence of this mean with N is rather slow for
large values of d.
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FIG. 3. Mean value of B as a function of N for five values of d.
For a given N and d, this mean is computed from an ensemble of
5X 10° randomly sampled N-walker snapshots. Note that the hori-
zontal axis is logarithmic.

IV. THE ROLE OF IMPORTANCE SAMPLING

In importance-sampled DQMC simulations, a trial func-
tion W(q) that resembles the ground state wave function is
used to guide the walkers’ time evolution [3]. The long-time
steady state distribution of the walkers is then proportional to
the product W(q)W,(q) of the ground state wave function
and the trial function, while the weight function W(q) that
appears in Eq. (5) is proportional to the ratio W(q)/W¥(q).
Here we show that a good trial function can temper some-
what the population size requirements described in the pre-
ceding two sections; however, for our model system, these
population size requirements seem to vanish only in the limit
of perfect importance sampling, when W (q)=V(q).

We take the trial function to be W (q)=exp(-ag’/2)
where the parameter « controls the quality of the trial func-
tion. For «¢=0 we have no importance sampling (V,=1),
while for a=1 we have perfect importance sampling. With
this trial function, the long-term steady state distribution of
walkers is given by

1+a\
F,lq) = (2—) exp[- (1+ a)¢’/2] (7)
T
and the weight factor that appears in Eq. (5) becomes
7 \dn
Wala)= (1—) epl-(1-ag2].  (8)
+a

Following our earlier discussion, the approximate expecta-
tion value of the operator B(q), estimated using importance-
sampled DQMC simulations, can be written as B,=b,/s,,
where

N N

1 1
b,= X’E B(q)W,(q,) and s, = ITIE Wa(q,). 9)

For single-walker snapshots (N=1), the variances of these
quantities can be computed analytically:
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FIG. 4. (Color online) Error in the mean value of B, as a func-
tion of d for two values of N and three values of a. Solid lines and
filled squares are for N=100; dashed lines and filled circles are for
N=1000. For a given N, d, and «, the mean value of B, is com-
puted from an ensemble of 5X 10° randomly sampled N-walker
snapshots. Note that both axes are logarithmic in this figure. Lines
are drawn to guide the eye but have no mathematical significance.

2+d 1
Sat =1, (11)

where y=2//(1+a)(3—a). Except in the limit of perfect
importance sampling (a=1), the quantity y>1 and both
variances thus grow exponentially with d once d is large
enough. We therefore anticipate that once this critical d value
is reached, B, will exhibit behavior much like that shown for
B in Figs. 2 and 3. In particular, we anticipate that for small
N and large d, the probability distribution P(B,) for B, will
be broad and skewed, with a mean that deviates systemati-
cally from the exact quantum mechanical expectation value
(By=1/2.

Figure 4 confirms this hypothesis, and shows how the bias
in the mean value of B, depends on N, d, and «. Although
improving the quality of the trial function W (q) by increas-
ing « does reduce the bias in B, at a given N and d, we see
that this bias nevertheless increases (although not exponen-
tially) with d for all of the mock DQMC simulations per-
formed here. It thus appears that the requirement that the
DQMC population size N must grow rapidly with d is fairly
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general, and applies to both importance-sampled and
nonimportance-sampled DQMC simulations.

V. DISCUSSION

DQMC simulations are generally thought to be particu-
larly useful for finding the ground state of many-body quan-
tum systems, because the computational effort required to
simulate the diffusion of walkers in configuration space does
not grow exponentially with the dimension of this space. We
have shown that this is only part of the story. Unless perfect
importance sampling techniques are employed (in which
case the exact ground state wave function is known and there
is no need to perform a DQMC simulation), it appears that
the population of walkers in a DQMC simulation must grow
exponentially with the dimension of the underlying configu-
ration space in order for a walker snapshot to faithfully rep-
resent the system’s ground state wave function. Conse-
quently, it is likely that large walker populations will be
needed to compute accurate expectation values of HNC op-
erators for many-body systems using descendant weighting
techniques. As an example, we have considered a simple
model system, the d-dimensional isotropic harmonic oscilla-
tor. For this system, when d is large and the walker popula-
tion is too small, the expectation values of HNC operators
computed via descendent weighting can exhibit large sys-
tematic biases. Although importance sampling techniques
can reduce these biases, we observe that the demands placed
on the quality of the trial wave function also increase as d
increases.

These findings suggest that caution should be employed
when using forward walking or descendant weighting tech-
niques within a DQMC simulation to estimate expectation
values of HNC operators in systems with high-dimensional
configuration spaces. For these systems, other methods for
estimating expectation values of HNC operators, such as
variational path integral simulations [6] or reptation quantum
Monte Carlo simulations [7], are likely to be more efficient
than descendant-weighted DQMC simulations.
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